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SUMMARY

A number of estimates and tests for mean life and other
parameters derived under the exponential distribution assumption
are studied under the alternative condition that the distributio . has
increasing (decreasing) failure rate. The estimates considered
are, for the most part, based on censored and truncated samples.
It is shown that these estimates generally favor the producer (con-
sumer) in the IFR (DFR) case. Properties of order statistics and
their spacings from distributions with increasing (decreasing)

failure rate are presented.



l. Introduction.  In a fundamental paper in the hterature of life

testing Fopstein ana Sobel (1953) antroduce life test procedu-es based
on the exponential distribution. These procedures have been codified
n a Department of Defense nandbook (1960) and are now videly em-
ployed. Zelen ind Dannemiller (1961) show by sampling from Weibull
distribution alternatives that these procedures are not robust in
testing for mean hfe. However, as Antelman and Savage (unpub.)
have pointed out they may be robust in testing for cert..n percentilzs.
For certain loss functions based on percentiles, these procedures
seem to be robust. Since statistical procedures based on the ex-
ponential distribution have a great deal of intuitive appeal and com-
putational simplicity we investigate their properties relative to
alternative distributions ha\'xr{g increasing failure rate (IFR) or de-
creasing failure rate (DFR).

This paper cssentially confirms, theoretically and more
generallv, the sampling results of the 7Zelen-Dannemiller paper for
statistics derived under the exponential assumption. Usirg Weibull
distribution alternatives (with parameter values which insure that
the distribution has increasing failure rate) 7Zelen-Dannemiller show
that the use of these statistics may result in substantially increasing
the probabilitv of 1ccepting 1tems having poor mean lives. We show
that these estimates for the mean are positively (negatively) biased
when the distribution is IFR (DFR). Also ue obtain bounds on the
expected values of the e>ponential estimates ‘or the distribution

function and bounds on the expected values of the order statistics.



RS

In the last section various properties of [FR (DFR) order statis-

tics are presented.

Preliminaries. Let X denote a random variable with right continu-

ous distribution F such that F(0") = 0. If F has density f ther

r(t) = rT—_E(—;_.)-mT— is known as the failure rate. Note that r(t) =

- J?_ log[1 - F(t)] when a density exists. For this reason, ve say
that F is [IFR (DFR) for increasing (decreasing) failure rate if
log[l - F(t)] is concave where finite (convex on [0, o) ). Note
that any IFR (DFR) distribution with specified mean can be ex-
pressed 2s the limit of continuous IFR (DFR) distributions with
the same mean. Hence for many of our results it is sufficient to con-
fine attention to continuous IFR (DFR) distribution~.

We ofien use the well known fact that if F i8 continuous,
then Y = -60log¥ (X) is exponentially distributed with mean #
where F(x) =1 - F(x) . Repeatedly we use the fact that if F s

IFR with mean €@ then there exists X4 > § such that

r<x forx<x0
y = -0 log F (x) <«
\

>x for x> X0
This is evident from log concavity and the bounds on [FR distri-
butions given in Barlow and Marshall (1964). The inequalities are
reversed when F is DFR.

Urnless otherwise indicated we denote ordered observaiions

from a random sample of size n based on a random variable X



s - AP 2 f 3 oY -
by Xl—— :Xn . We define XO =0

2. Estimates based on censored samples. Assume n items are

put on life test and let X! < )(2 - PP < Xn denote the ordered

observations. If F has density f such that

X
1 ]
7;' € sz
f(x; 0) = f
0 x <0
then
r r
N DS -
/ Xi + (n - r))(r o (n =i #l)(Xi - Xi—l)
(2.1) ('; - 1 - 1
r,n r r

(1 <r < n) is the maximum likelihood and minimum variance un-
biased estimate for 6 based on the first r order statistics
(Epstein and Sobel, 1953).

The normalized spacings 5i =(n-i +l)(.\(i - Xi-l) which enter

A
into the computation of Gr " have a natural intuitive appeal. Thev

have also been used as the basis for a statistic to test for IFR
(Proschan and Pyke, in preparation). We shall derive and use sev.
eral properties of these spacings when F is [IFR (DFR) . Since
the normalized spacings are independent and identically distributed
in the exponential case (Epstein and Sobel, 1953), Theorem 2.1 below
is quite intuitive.

A random variable X is said to be stochastically smaller

than a random variable Y if and onlyif P[X > x] < P[Y > x] for

all x.



Theorem 2.1. If F 1is8 IFR (DFR) the normalized spacings

(n -1 H)(Xi - Xi-l) are stochastically decreasing (increasing) in 1 .

Proof. Assume F is IFR andlet F(x) =1- F(x). Note that

PlnX, > x] = [F (X" > [F (X!
1
since [!-"(t)]t is decreasing in t . Let
F (x) = F(u + x) - F(u)
u

F(u)
and note F (x) > F(x) . Given that )(,l = u 1is observed, X, -X
u - 2 l

is distributed as the first order statistic from a sample of size

n -1 ecach with distribution Fu(x) . Hence

X n-1
P[ (n- (X, - X) > x| X, =u] =[F (<)
Conditioning on Xl we have
_ X, 0 x yin-l
B[ nXl_>_ x] = [F(;)] 2 [ ru (—Tn- )]
= P[(n - (X, - X)) > x| x| =ul
for all u > 0. Unconditioning
e X n-1
P( n)(l > x] i SO [ Fu(—n-jr)] dG(u)
= P (n-1(X, - X,) > x|
where G(u) =1 - [F(u)]n is the distribution of )(1 . Hence we
have shown that n)(l i8 stochastically larger than (n - l)()(Z - Xl) .
In a similar manner we can show that (n - i + 1)()(i - xi-l) i8
stochastically larger than (n - i)()(i+l - Xi) for 1=2,3,...,n

All inequalities are reversed for DFR distributions. ”

As an immediate consequence of Theorem 2.1 we have that



E{[(n-i+l)(x: = O, \]”

i-1 j

is decreasing (increasing) in 1 for a >0 when F is [JFR
A
(DFR) . Using this fact we can show that Gr n is positively

hiased when F is [FR.

Corollary 2.2. If F is IFR with mean 6 , then

£ 6
8§E[9 | < n- tor r=12,...,n.

All inequalities are sharp.

Proof. From Barlow and Proschan (1964a, p.33) we know that

ERE
E 1,n]_9' Also

h(r) =E{E[ (n -i+ l)()(i - X:_l)] - 9}
izl

exhibits at most one sign chinge as a function of r since

E{(n-i+ l)(Xi - xi-l)]
is decreasing in i by Theorem 2.1. But h(l) >0 and h(n) =0,
which implies h(r) > 0 for r=12,....n. Hence

5 6

E[er, n] 2 )
Clearly the bound is attained by the exponential distribution so that
it is sharp.

To show the upper bound we note
r n
T‘)(i<|>(n-r) eri )(i
izl i=l
for every sample realization. Hence

A
E[r6_ ]<n#6
r,n' =

A
or E[6_ ] < A
r,n =T



{,

Since equality is attained with distributions degenerate at ( (which

is the limit of IFR distributions) the tound is sharp.”

Corollary 2.3. If F is DFR with mean f , then
A
O<E[® <8 for l<r <n
= r.n —

s

All inequalities are sharp.

Proof. The upper bound follows from Theorem 2.1 and the method

of proof in Corollary 2.2. To show that the lower bound is sharp, let

r 0 x <0

0

>
where € >0 is arbitrary. Then F is DFR with mean # and

P[X; > x] i(;‘) [Fe] [ Fx)™)
=
_exin- J)
Z( ) <

€e X

Hence
i-1

E[X,] = S‘:P[Xiz z/“>_(_.,._ <2"e6
)=

when 0 < e€<1 . Since € is arbitrary we see that
E[xilzo (1<i<n)
is sharp. !l

) .th ..
For convenience we now denote thei order statistic from

a sample of size n by )(i

’

Theorem 2.4. If F 1is IFR (DFR) (n -1 + I)}(X. - X. ) is

1, n i-1,n
stochastically increasing (decreasing) in n for fixed 1i. Hence

r.n+l] ’ (ISrEn)

A A
E[Gr' n] < E[6
(>)



Proof. Assume ¥ is [FR . Let Gi n(x) =P[?\'i nfxl and

note that Gi n(x) £ Gi l(x) for samples from any distribution.

) , n+
Now
P[(n - i}X X, ) > x] = ('v[r )]”'idc )
1+l, n n w il S 20 U(F-T 1, ul
(d X n+l-i
< ) Rlgas? 46,
o
(\ X ntl-1
< TR G, )
= P (n+l-‘)(xi+l, n+l - xi,n+l) 2 x1:
8
the first inequality holds since [F'(t)]t is decreasing in t when
F is IFR
All inequalities are reversed when F is DFR. !
A
Thus when F 1s IFR , the estimate, Pr no of mean life

based on a sample censored on the right becomes worse with in-

creasing n when r (l<r <n) remains fixed.

Acceptance Sampling. Statistical methods for testing hypotheses

about the mean of an exponential distribution depend on *the statistic,

. in the case of censored samples (Epstein, 1960a). For test-

, N
ing the hypothesis HO: 6 = 90 against the alternative HI:
6 = 61 < 80 subject to Plreject 6 = 90' 90 true] = o . the rejec-
tion region i8 of the form
2
6,x, _(2r)

A o

6 ¢ 9710

r.,n — >r

If xf_a(Zr) < 2r , then we shall prove, using Lemma 2.5, that



2
r s 00)(1_ (Zr) q
(2.2) P A < g F IFR, 0 - 6
r.n — 2r 0
2 4 X
[N ) - D
< P @ < (Oxl-a(zr) F(x) =1-e ’90 © o

= r.n —
2r
so that the exponential test provides a size o test when the failure
distribution 1s IFR . To see (.2) we need the folloing casily

verifiec result which e present without proof.

Lemma Z.‘)r. If ¢& 18 concave &(0) -0 , and a > 1,
xiEO(i:l,Z,....n) , then
n . n
[ ¥
¢ A x., < \ a. &(x.)
1~ 1 i
i=1 1=1

Let ¢>-l(y) =-flog F(y) so that Xi = ¢>(Yi)

.th

where Yi is the 1 order statistic of an exponentially distribu-
ted random variable with mean A . Then
r
A <
rf = 0 Y.) + (n-r1)o (Y )
r,n ~ i r
1=1
r
r ]
> ¢ S Y. + (n-T1)Y l
— t r

by Lermima 2.5. Using the bounds on [FR distributions (Barlow

r
-
and Marsnall, 1964) and letting 7.r = 0 Yi + (n - r)Yr , we have
1=1

P, [da(?.:) < c) < Pn[?,#:c]

when ¢ < 68 . We obtain (2.2) by letting 6 = 90 and



f % g
‘o X, (4r)
2

Samphirg with Replacement. Suppose now that failed 1tems are re-

placed at failure. [n this case the bias of the usual estimate for
18 even greater than 1n the non-replacement case.
K .th .
let \i denote the time of the 1 failure when failed 1tems

are replaced. The maximum likelihood estimate for A based on

tite exponential assumption 1s, 1n this case

ot [ # = # x |
I n.\] + n(."(Z - ‘(]) S T n(.‘(r - ‘(r_])
*
nX
.

(Epstein, 1960b).

Theorem 2.5, If F 1s IFR with mean ¢ |, then

Proof. Clearly .‘(:_c

Z .\’r for any distribution F  so that the
upper bound is obvious. To show the remaining inequality we intro-

duce the foulowing fictitious replacement policy:

Policy A: Replace a failed item with a good item of the same "age

Lt . .th . :
Let Xi denote the time of the 1 failure under this policy and

r

;3’“ 1 ( , ”(\(** \(*:« )
= - n - 1 ¢ L\ = N\
r :_, 1 1-1

r,n
1=1

It is clear that F,[ﬁ** 1« FIAT )
r,n — r

since under the [FR assumption the conditional mean life of an aged

item 18 less than the mean life of a new item.
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We need only show F [6 ] < E[# ] . Let
P = r.n

F(x +u) - F(u)
F(u)

Fu(x) = and G(u) = P[X < ul . Then

1

-1
p[xz-xlin_)-(T‘Xl:u] = [F (™ and

e N

Eltn - 00X, - X1 = 41 F (2017 dx dG) . similarly
o J -

0 -0
under Policy ..
% o x X . N
PIX, =Xy 2 g1 Xp=el = [F ()]
and
. NS
Eln(X)" - x’l’ M % Sq S [F(X))" dx dG(u)
0 Y0
Since [F(E" > [ru(ﬁ)]“" when F is IFR we
have A % o
£l (n - (X, - xl)] < E[n(x2 - X )
To show

o] Y ¥
Ef(n -1+ 1)()(i - X, W < Ef(n-i+ 1)()(i S xi_ln

1
for 2< 1 <n we proceed as above except that the definition of G

is different for the tvo pclicies. For example, for 1 =3 let

G(uz. ul) = P[Xzfu2| Xl :ul]
n-1
=1 - [Ful(uz - ul)]
d G* ) - P[‘(*# . | \(tr# ) ]
an (UZ' u) = X, <, |
n
=1- [I"ul(u2 = ul)]

Since G(u, | ul) < G*(uzl ul) we have



Fl (n - X5 - X))

0N

. |
<0 <0 F\l ,( n-. )] dx dG(”z ul) dG(Ul)

. *
E;f)]n de dG (uzl

N
=
—
—_—
) |
—

—

ul) dG(u])

N\
—
—
——

laal

(21 7%dx dG (u, | u)) 4G(u))
£0 -0 2 c

" #
E{ n(X, - X, )1 . A similar condition ng argument

works for 3 -1 < n .i|

Bounds on estimates for the reliability function. The minimum

variance unbiased estimate fo- R(t) = F{t) (t is fixed) under the

exponential assumption 18

R.(t) - max[ 0, (] - ‘7 )"l‘
r

A

where 7 = X 4 (n-x‘).‘(r . For a discussion of such minimum
) 1
1=1

variance urbiased estimates see Tate (1959). For convenience,
assume that 6 =1 . Then, under the exponential assumption, 7

has density

r-1 -v
(y) = L=
gry ]r-”.'

Theorem 2.6. If F 1is IFR withmean 6 =1 and t< 6 =1,

then
\l O
A -1 Wr-1
E[R,(M] > |\ [1-817 " (y)dy + ( (1-t;" " 'g_(y)dy
l - ‘t Y r ‘l r

Proof. W'thout loss of generality we may assume F continuous

(see preliminaries). Let tb-l(y) = -log F(y) . Then ¢ is con-

cave, increasing and ¢(0) =0 . If Yi is the ith vrder statistic

Ll

r



from an exponentially distributed random variable with 0 =1
then .‘(i : ¢~(Yi) 1s the ith order statistic from an IFR random

variable with distribution F and mean € - 1. Furthermore

r
A\
7 = H(Y) v (n - r) (Y )
r , i r
1 -1
G
"d)'\Y.+(n-r)Y |- ,1[7.*]
_ 1 r r

i1
by the previous lemma. Therefore
r-l]

ﬁﬂu ‘nmx[Q(l-%r)

¥ max[0,(l -

¢(7,r)
Since
v v < 1
¢ (y) >
] y > 1
‘ve have

A \l v Or
AR > -8 g ray + U a0 e ay
ot L T <1 r

The maximum likelihood estimate for R(t) under the exponen-

tial assumption 18 t

Z(t) - e

where Gr L was defined in (2.1) . Pugh (1963) has shown that

A
under the exponentia. assumption Rz(t) is negatively biased when

tne true reliability R(t) > % = . 368 . Assuming F is [IFR

A
we can obtain a lower bound on E[Rz(t)]

Theorem 2.7. If F is [FR with mean 6 -1, then




tr t
| r

E[ﬁz(l)] 2 \ f‘W gr(y) dy + PW \ gr(v) dy
0 b Il

The proof parallels that of Theorem 2. 6.

Ystimates and confidence bounds on percentiles. If F s IFR

; th : :
with mean € and p percentile £ ., then

[-10g(1 - p)]
~logl - p)leh <« £ < _f
[ ogl l] p P

(See Barlow and Marshall (1964) ). Hence by Theorem 2.1

o (‘) ['l”g(l - F)] LS E for - = l,&,....n
r.n ) [ = p
while A ) )
B ﬁn'n [ -log(l - p)] < s

and one might be tempted to use these estimates to bracket g
Intuitively, we want a confidence interval to have small expect-
ed width when it covers the true percentile. The usual distribution-
free confidence intervals based on order statistics have smaller
conditional expected width under the IFR (DFR) assumption than

under the exponential assumption, given that the interval contains

§p log F(X)
Togll = pT

that Y 1s exponentially distributed with pth percentile Ep when

and note

the true percentile. To see this let Y = -

F is continuous. Suppose that )(i < Ep < X] . Then clearly
Y. - Y.
XJ-_T‘(‘ > 1, which imphes
3o
E[X. -X. | X. <c§ <X ]< EIY -Y <Nl BN < BN
[ ) il %2 p - J] - f J L ! - )]
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3. Estimates besed on truncated samples. If n items are placed

on life test and if sampling is terminated at time T , the associa-

ted sample is called a truncated sample. L et .‘(l < Mg< ... & X

denote an ordered sample from a distribution F and let
r
\ :
V(T) - \(i+(n-r)r
iLal

where r 18 a randoin variable and denotes the number of X's less
than T . Then V{T) s the total life observed up too time T

T his statistic occurs, for example., in sequential life tests for the
exponential case (Epstein and Sobel, 1955). It is not surprising that
this statistic also has greater expected value under the I[FR as-
sumption.

X
-_6.

For convenience, let G(x) =1 - e

Theorem 3.1. If F is IFR (DFR) with mean € , then

EF[V(TH > EG[V(T)]
(<)
Proof. Assume F IFR and let Xl < X2 < ... < Xn denote an
ordered sample from F . Without loss of generality we may as-
sume F continuous. let y = -68log F(x) . We knov there exists

xg > 6 such that x > -flog Fix) for x < X0

(Barlow and Marshall, 1964).

and x < -6log F(x)

for x > X0

Let Yi S -Ologr(xi) I T < x then

O ’

/]—1

r s
Xi*(n-r)Tz>Yi*(n-r)Ti\,Yi#(n-s)'l
=1 1=1 1=1

-

where r (s) denotes the number of X's (Y's) less than T.



Hence for T < x

0

FelVITYH > E[V(T)]

I.et
" N if Y. T
Y. = : '
E T nther - 1se
For T > xo ,
r s
Y\(i¢(n-r)'T’-‘Yi-(n-s)T
1.=l i=1
r r
<
=§Xi+(n-r)T-'Y-(n-r)T
[ -
1=z1 1=1
r n
<
zz(Xi-Y)+/(‘(—Y)
1=1 i=r+1
since X. < Y for 1 > r Hence

for T > xo

A similar argument holds for the DFR case.

Consider the estimate

r
T X. +(n-1)T
gt y
ATy - Vr(T) _ j r
nT 1f
A
When F is the exponential distribution, 6(T)

likelihood estimate of # In this case

| @(T)] - 0. cov(r,é(T)) S f
l-exp(- %)

is the max'mum
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since r and 0(’1‘) are negatively correlated (Bartholomew,
1957). In the IFR casec, this statistic exhibits even greaier bias

X
for T 6 . As beforelet G(x) =1-e 7.

Theorem 3.2. If F is IFR ith mean f | but not degenerate

then

ELLBT [r >0 > BT [r > 1] for To6

Proof. Assume F is continuous and let Yi = -flog )F(Xi) as
before and let 1 if X < T
a1 = - o=
0 otherwise
(1 if Y <7
b, =/ 4 '

otherwise .

0
nr .
T]T-a,(T-x.)J
[59 1

i
n
Sie
1
i=1

Assume T < @ . As inthe previous proof Xi < T 1implies

We can write

If a. =1, then bi:l and

-

Yi < T and hence a. < bi
l—

n
T-Xi<T-Yi . Hence if T ai_>_1,

1=1
n n
. ~ ) =
SfT-ai(T-Xi)‘ \ T-bi(T-Yi)l
i=l C > Tl
n - n -
a. X b.
1 L 1

A
and EF[A(T) r> 1) > EG[(‘(T) r > 1] for T < 0



17

Inverse Birnomial Sampling.

Nadler (1960) has considered the following type of sampling.
An item having life distribution F with mean f/ is put on test until
it fails or time t has elapsed; at this time the item is replaced by a
fresh item. This is repeated sequentially until r actual failures
are observed. T'he number N . of items that have to be tested until

the r actual failures are obtained is a random variable. Nadler

X
(1960) showed that when F(x) = 1-e L , an unbiased estimate of

6 is
r 3

(')‘ 1
r(t) = S “ Yi + (N-r)t

n'l_\ A=

1=l
where the Yl. SIED Yr are the r life lengths not exceeding t

We show next that when F is [FR (DFR) with mean 6 , then

6 (t) is biased high (low).

Theorem 3.3. If F is IFR (DFR) with mean 6 , then E8 (1) >(<)6 .

Proof. Let F be IFR . Let Zi denote test time elapsed between

the 1 - lst failure time and the 1t failure time, 1=),¢,..,,7r,

th

where the 0 failure time is definedtobe 0 . Then

(';‘ 1
r(t) T r

i

)

Next consider an 1lternate testing procedure differing in that

replacement occurs only upon failure. Let 7,'i = test time elapsed

l etween the i - 1®' failure and the ith failure under the alternate
testing procedure. Now since F 1is [FR , Zi is stochastically

warger than Zi' . It follows that



¢

]
Edw - LN gy s
r r _

The inequality is reversed when F is DFR

Sampling with replacement. In this case

6(T) -

nT nT
r

where Ni(T) denotes the number of replacements in the ith item
n

position and r = ¥ Ni(T) denotes the total number of replace-
1=1

ments in [0, T] . Of course F[——l-

N (T)
Pl

— ] 1s unbounded.

not43

1
However, v-e know that FE[ Ni(T)] f :g— for all T > 0 (Barlo-
and Proschan, 1964b). Hence this again indicates that (3(T) will

tend to be larger in the [FR case than in the exponential case.

. th . cr .
4. Bounds on time to r failure. Under the exponential ass 'mp-

~
tion, the distribution of the statistic Or n depends only on r and

noton n . The choice of n in this case is usually determined

by the ratio

E(X )
—p N
E(xr, r)
which is an indirect measure of the expected saving in time due to

. . th
putting more than r items on test but terminating at the r

failure (Epstein, 1960a). We always have



|

Since the bound 18 attained by the degenerate distribution (- hich 1s
the limit of JFR distributions), this is not a useful measure

we assume only [FR . Horvever, e can obtain non-trivial hounds

Assume F [s IFR, with mean 1, and continuous. W¢
may v rite Yi = -logF'(Xi) -vhere Yi is the ith order statistic
in a sample of n from distribution G(x) =1-¢ ° , and is a con-
vex function of .\(i. rhere Xi 1s the ith order statistic in a
sample of n from F . By Jensen's inequality

E(Y.) > -log F [E(Xi)],
so that

FIE(X)] > o2
If b(x) 1is a sharp upper bound on F(x) , then b is decreasing
to 0 and

b[E(Xi)] > 50,
Hence choosing Xg such that

b(xo) = e-F:(Yi)

1]

where of course
1
(Y.} - 1
i m-3+1)
we have j=1
F?(Xi) < X0
Using tabled upper bounds on F given one or tvo moments of F
(Barlow and Marshall, 1963) we can obtain upper bounds on E(Xi)

When F is DFR we can, in a similar manner, obtain lover

bounds on E(Xi) using lower bounds on F



()

If v e specify the first moment of F |, explicit upper bounds

can be given on F(X.) ‘vhen F is [FR , as sho'nin
1

T heorem 4.1. If .\'1 T are order statistics from
- 2 - - 'n
an JFR random variable with mean #  and Y1 2, © 0. F Y,
are the order statistics from G (x) oy , then
(a) 0F(Yl) < FI(,‘(I) L
f E(Yi’
b (X, oy -
( ) F(\l) _ l _F:(v)' 1 1 n
-e i
(c) 6 < F(X )< 6E(Y )
- n’ - n

(a) and (c) are sharpand (b) is non-trivial though not sharp.

Proof. (a) and (c¢) are shovn in Barlo: and Proschan (1964a),
Chapter 2. Hence +'e need only orove (b) and we may assume 0 - .
First let us verify that (b) 1is non-trivial. Note that by (a),

EX < EXn < F'Yn . so that EYn 1s a trivial upper bound for

n-1 — -
EXn |- Therefore, a non-trivial upper bound for F..\(q | must be
EY !
less than EY ; i.e., we must show that — —2% < FY
n 1 - e ©1n-l 0
But for z > 0 , —=—_ < . +1 ; thus kelttiing  z = BY
-z n-1
1l -e
l + 1 % L e conclude
n on-1 z
B
n-1 1 1 1
<l I ) N
1 e'EYn-l n*n-l""+2"'l F:‘n

To show (b) use the bound

F(x) < b(x)

h]
A
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where w depends on x and satisfies j e "Wdu=¢
C

(Barlow and Mar-shall, 1964).:i

Sharp bounds will be derived in a future publication. However
these are not as convenient as the bounds of Theorem 4.1.

Bounds on expected values of order statistics can also be

g . th n
given in terms of the p percentile.

Theorem 4.2. Let Xl < Xz
tics from F , IFR with pth percentile Ep . Then

€ o on € Xn denote the order statis-

~

( = / 3
‘ p 1 1

and
)-1 xlogq xlogq
N AW s s O
(4.2) E(XJ.)_>_ z <i’ S P '1.e P )l(e ) >n 1 x
i=0 .
where q =1- p . All inequalities are sharp.

Proof. To show (4.1), let

1 0

IA

. x < A
C.(x) = X - -
= \qexP[(r—.%) logq] x > &
P
Note that GA(A) =1 and GA(EP) =1-p=q . Since log F(x)

is concave, there exists at least one value of A > 0 such that

GA(x):F(x) for all x>0 . Thus E(Xj)<_ sup E(Yj) where
0 <A<
<acE

Yj is the _jth order statis ic from GA . Now
j-1
. /[ n i n-i
s { ") 64018 4] ™ ax
& i
1=

e 1 5 ;
& & S‘ r (":” g 1 (1-0" 4t ax
A TG n+T-) G \(x)

E(Yj)



To find the maximizing A , consider

Il .
¢ C(n+1) J-1 n-j
— E(Y.) =1 - l- d
98 (YJ) FGrnt T -) V\GA(A)t (1-t) t

\

Mn +1)

- j-1 n-)

x - & x - &
'qexp[z-—_lg log q] logq-—-—f—z— dx .
P (& -4
p
(}E(Y.)
Since GA(A)zO - -(Ep— A) — reduces to
T(n + 1) e )-1 n-j . .-
W.SA (G A7 LG (0] g \(x) (x - € ) b = E(Y )=
where 3N 18 the density of GA .
Hence
) o E(Y —ag-A : e =i
> (s 5 Ly G S (13 2 doeo © iyeen I
.= 11 1
_-(ép-A)[lym(Em...&T_—jﬂ)]
For j suchthat 1+ : (L+ .+ 1 ) < 0, we have

J . 1 1 1
EE(YJ)-EO. FOr] such that l‘m(;*.-..*m)iO

we have (-)—ZE(YJ.) >0 . Thus E(Yj) is maximized in the first
caseat & =0 andat A = § in the second case. When A& = 0,
p
E(Y.) - : A v ). When Aa-=£%_ E(Y):¢..
- n-j+l p J |

exlog?p for 0 < x < §
To show (4.2). Let G(x) = f - p

0 for £ < x < « .
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Then G(x) < F(x) for all x >0 and G has pth percentile
Ep . Thus E(YJ.)_(_ FI(XJ) where Yj is the jth order statistic

from G.. But

j-1
[ o] - /N . .
E(Y ) = j ‘/ G [ ST dx
J 0 'LO 1
1=

Using the above definition of G , we obtain (4.2). '

5. Further results on order statistics and spacings. In this section

we present some results of theoretical interest concerning order

statistics and their spacings from PFZ and IFR (DFR) distri-

butions. Many of the results hold without the restriction F(07) = 0.

First we present some total positivity properties of the order
statistics. A function K(x,y) of two real variables is said to be
totally positive of order r(TPr) if for all 1 < m < r;

Xp S x, <o < X and YIS Y, S Sy we have the

determinant inequalities

m
Kix., yj)’ 5 >0

The following lemma i8 of use later on, as well as of interest in its

own right.

Lemma 5.1. Let F be a distribution having density f with

f(x) not necessarily 0 for x < 0 . Let fi(x) be the density
of the ith order statistic in a sample of size n . Then fi(x) 18

TP in i, x where 1 = 1,2,....,n and -e& < x < @ .
[+

Proof.

(5.1) f(x) = U_TTYT‘I'TYYT FUlE %) f(x)



r Ni-1
E(x_) 1s TP in 1 and x , when 1 =1,2, . ..,n

(x) - <

Since

I
and - < x < o , the conclusion follows. ||
We may obtain a similar result concerning the right hand tail

of the distribution of an order statistic.

LLemma 5.2. Let F be «ny distribution with F(x) not neces-

sarily 0 for x < O , Fi the corresponding distribution of the
ith order statistic. Then f].(x) 18 TPG in i,x , where
V=N A n and -, < x < o
Proof. .
1-1
I /n ] —N-
- J n-)
(5.2) Fi(x) = E \J> F'(x) F (x)
j=0
)
Now IF(X) » 1s TP in x,) . Therefore
¢ F(x) =
s J
= A s 3
F (x) = \ /n g 0 R R A Py P
i LN ) L)
j=0
TPQr in iand x, where H(k) =1 for k > 0 , 0 otherwise. a

In Barlow, Marshall, Proschan (1963), it is shown that the
order statistics from an [FR distribution themselves have an [FR
distribution. The next lemma shows a similar preservation of the

Pl’-‘.2 property.

I.emma 5.3. Suppnse the underlying density f s PI-‘Z , with

f(x) not necessarily 0 for x < 0 . Then the density fi of the

ith order statistic is also PF2 for fixed i =1,2,....,n
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Proof. It is easy to verify that when f is PF‘2 , sois F and
F. Thus logf, log F, and log F are concave. It follows from
(5.1) that log t'i is concave, or equivalently, fi is PF‘2 for
fixed i =1,2,....,n .||

Next we obtc 1 some comrparisons between the order statistics

of an IFR (DFR) distribution and the corresponding order statis-

tics of an exponential distribution.

Theorem 5.4. Let Xl < )(2 < eeve < Xn » n > 2 , be order sta-

tistice from F , an [FR (DFR) distribution with mean 6 , but
t

45 l- ev. Let Y, < YZ 5 owene X X be order statistics from
t

-
’

G(t) =1 - ev . Then

(a) EXJ. - IEZY_j has at most one change of sign as j goes
from 1 to n . Moreover if one change of sign does occur, then
I-:X.j - EY.i goes from positive (negative) to negative (positive) values.

(b) If 6 = 6', then one change of sign does occur.

Proof.

(a) Assume F is a continuous I[IFR distribution with
mean 6 and G is exponential with mean 6'. We have seen in
Section 1 that if Y has distribution G , then X = ¢(z;) has dis-

tribution F , where ¢>'l(x) -log F(x) , a convex increasing

function whichis 0 for x = 0

Thus

o0
EX, - EY, =S‘o {dh(%,)- y}si(v)dy :



)
ax )

where By is the density of the ith order statistic from the ex-
ponential distribution G . By Lemma 5.1, gi(y) is TP _—ano
and v . Also ¢(%,) - y changes sign at most once, and if once,
from positive to negative values. Py the variation dimimshing
property of totally positive functions (Karlin, 1964, p. 34), F,Xi - F.‘x'l
also changes sign at most once , and from positive to negative values,
if at all.

n

n
(b) If 6 = A’ then X EX. =6 =16 S EY . Hence li,\'i - I".Yl
'—'1 1=

1
must change sign at least once or be identically 0 fc.
i1=12,....,n . Now since F G , F cannot agree with G
on an interval. Hence by Corollary 4.10, Chapter 2 of Barlow and
Proschan (1964), EI)(1 > EYI and EXn < EYn . Thus E,\'i- EY1
is not identically 0 for i=1,2,....,n. Hence EXi . EYi
charges sign exactly once.

If F is [IFR but not continuous, we may obtain the same
result by using continuous [FR approximations.

Finally, a similar argument holds if F 1s DFR. '!

Actually, under the same hypothesis we may prove a stronger
version of (a) in which F‘Xi = EYi 1s replaced by fi.\'? - EY? ,

a>0 . Ifinstead of assuming EX = EY 1in (b), we assume

84

9, then we may show that one change of sign of F,.\i? - FIY1

EX? - EY
does occur. We omit the details.
We may obtain further consequences of Theorem 5.4 using the

notion of majorization. A vector a = (al.az, e ,an) majorizes

a vector b = (bi'bZ"""bn) (written a > b) if



-J

a, > ¢ > ... 2 , > D i, 2 . >
11_12_ _an bl—b&— _bn la_

n n

k =1,4,....,n-1, and Z a.l =J b2 bi . See lardy, Littlewood,
1=1 1=

Fdlya (1952), Chapter II.

Theorem 5.5. Let Xl < ve..< X be order statistics from F
- - n

an [FR (DFR) distribution with mean § Yl < aee. < Yn be

t

2}
order statistics from G(t) -1 - e . Then (EYn,EYn LEEERE Y,

> . o
(<MEX ,EX_ ,.....EX)

-1

Proof. Let F be IFR . From Theorem 5.4 we know

e Exn-i#l has one change of sign, from plus to minus as

n n
i goes from 1 to n . We alsoknow X EY . =n6=ZI EX . ..
. n-i+l . n-i+l
i=1 i=1
j j . 3
Thus .Z Yn-i+l—>—.z EXn-iH' )y =1L,2,....,n . Finally, EYn-iH
l=1 1:1
and Exn-i+l are decreasing in 1 . Thus the conclusion iollows.

A similar argument holds if F is DFR . Il

Using Karamata's Theorem we obtain Theorem 5.6 below.
Karamata's Throrem states that if ¢ 1is continuous and convex and
a > E , then

\
. - > 8 .
(5.3) Zw(al) & /_“(bx)

1=1 1=1
See Haray, Littlewood, Pdlya (1952), p.89.

Theorem 5.6. Let | be continuous and convex, Xl' ool e B s B

Y., ....,Y as in Theorem 5.5. Then

1’ n
n n
ZMEYi) > Zwmxi)
i=1
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Proqj. [ et F be JFR . 3y Theorem 5.5, (FY']. *EECL FYl)

> (F,Xn, ..., EX) . Hence by Karamata's Theorem, the conclu-

1

sion follows. A simular arcument holds 1 f  F s DFR . |

Using Theorem 5.5 we obtain

Theorem 5.7. l.et ¢, ¢ << ... < ¢ e Y £ T
el s S ] - 2 — : n ] n 1 n
n n

as in Theorem 5.5. lhen 2 ¢ FY > 2 ¢ FX
5 I S
Proof. Let F be IFR . Defining d =FY - EX O,
1 n-1+1 n-1-+1

write

.[\/13

- J = e = | -
Cn-i+l(F'Yn-1‘l r'Xn-i*l) (Ln (n-l)(‘l & 17 -é)(dl ' d.i)
1=1
! (C“-& - Cn-3)(dl . (i‘3 . dj) oo (C‘3 -cl)(dlv 'dn-l)
+ cl(dl N5 dn)
Since <c¢. - c. >0 ,1=1,....,n-1, d +«...+d > 0 ,
1+l - l ) -
y=1....,n-1, and dl e dn = 0, we conclude that
I8
‘/(‘ . (LY ) - X ) >0
/ n-isl n-i-1 n-1+1 —
1-1

A similar argument holds when F 1s  DFR. ”

Finally we sumriarize some results concernming the covariance
of crder statistics obtamed by Tukey (1958). He -nows thatif F
1s [FR , then for h ) k , cov (.\'k. .\'h) « cov(XJ, .\'h) , where
)(i 1s the jth order statistic from F . He furthe: shows that if

F satisfies both

(a) log F 1s concave (i.e., F 1s [IFR), and

(b) log F 1s concave,



then

(1) the covariance of any two order statistics is less than the
variance of either, and

(2) the covariance between order statistics Xj. Xk 15§ mono-
tone in j and k separately, decreasingas j and k separate
from one another.

Note that if { 1is PF then F satisfies both (a) and (b) ahove.

2 ’

Next we derive properties of the spacings Xl, )(Z - Xl' e,

Xn - Xn-l from PFZ and [IFR (DFR) distributions similar to

those of the order statistics X, < X_ <.,.. < X obtained above.
—~'n

We first consider total positivity properties.

Theorem 5.8. Let f be PFZ with f(x) not necessarily 0

for x <0 . Then hi , the density of )(i - X

. , is PF  for
1-1 pa
fixed 1 =2,3,...,n. If we assume further that f(x) =0 for

x < 0.,, then hl is PF2 , Where hl is the density ol ‘(1

_Proof.

(5.4) hi(x) =m7r%}(mﬂ'§Fi-z(u)f(u)f(u t x) Fn-i(u+x) du

for 1i=2,3,...,n

Since f is PF, , so is r(u) = F-u)f(-u)

n-i+l}

s(u) = f(u) F

(u) . Hence 8o is

n!
hi(x) S LITE T ) gr(-u)s(u + x) du
for fixed 1=2.3,....n

Assuming f(x) =0 for x <0, we see that h, is PF from

1 2°
(5.5) hy(x) = n i) F "o |
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Theorem 5.9. if F 1s DFR , then H1 is DFR for fixed

Proof. Since DIFR 1s preserved under convex combinations

(Barlow, Marshall, Proschan, 1963, p. 381l) we see from the repre-

sentation

B n! -l =n-1
(5.6) A = s ‘\1 (u) f(u) B0 (%) du,
where Fu(x) = Flu+x), DFR 1in x for fixed u, that ‘:li 1s

DFR for fixed 1 = l,Z,...,n.H

Theorem 5.10. Let F be DFR with F(x)- 1 for all x>0

Then ﬂi(x) 1s TPZ in i,x where 1 :=2,3,...,n and xz()..

Proof. F‘l-z(u) ffluy is TP, in i :=¢,3,...,n and u > 0.

“

f-:n-”l(u+x) is TP, in i,u, in i,x, andin u,x(y > 0, x >0) .

%
Thus by a thecrem in the book by Karlin (in process)

(5. 6) . (x) - U_IT?-(’T_W B () flu) oF

18 TP2 in i,x , where 1:=2¢,3,...,n and x_>_0

n-1i *l(u ¢ %) du

Theorem (Karlin) let X\,x, £ traverse linear sets fL, X, =

respectively. Suppose h(\, ¥ - \ f(N,x, <) g, &) du(§) 1s well de-

(3

fined an AxX , where pu is a o -finite measure, and
(1) f(\,x,7)>0 forall X in \ , x in X , and § in

= ,and f is TP, for each pair of variables when the third

variable is held fixed.

(ii) g\, &) is TP,

Then h is TP&



Next we present some mdjorization properties of the
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nor -

’ stmilar to

malized spacings  (n - 1 ¢ l)(I\i - \;‘ l) W0 AR
th se developed above for the order statistic s,
Theorem 5.1, Let LS X be the order statistics
from F , an IFR distrmibution with mean Yl Y, Yn
: L e =
the order statistics from G(t) -1 - e ’ Then
e ) ¥ L N O
x.nkl,ﬂ(n l)(.‘k, .\l),...,}.(kn '\n—l)
>(<) EnY , En - IY, - Y,), ..., (Y -Y y
1 X 1 n n-1
}iroof. Let } be IFR By Theorem 2.1, i'(n - 1 + l)(.\'1 - .\']_l)
1s decreasing in 1 It is also easy to verify that Eanl
= F(n - l)(YZ - \1) S = I‘.(x” - yn-l) Sinu e
n n
XF(n-i‘l)(.\_-.‘fl i =2 (@ F(n-1+«1IY. -Y )
B 1 1-1 i 1 -1
11 el
it follows that
N
-1 - X > ‘ -1 -
F(n -1+ l)(.\i \1-1) > F(n -1 1)(Yi Y._l)
1:1 11
for 3 =12,...,n-1 Thus the conclusion follows.

A similar argument holds 1f ¥

1s DFR.

For normalized spacings, the analogue of Theorem 5.7 is

Theorem 5.12. Let cl: cee > . X,
as in Theorem 5.1l. Then
n
\ : , .
LCIE(n-l‘l)()\l- Xi_l)_-_
1=l («_’

X:' "'\'YI'YZ""'Yn
n

}CIE(H-l *1)(Y.1-Yi-l)
)i=1



Proof. The proof parallels that of Theorem 5.7.

We immediately obtain:

Corollary 5.13. Let .\'l, S Xn' Yl' e, Yn be as 1n Theorem 5. 1l.

Then for 1l <r <n

r r
\ . .
ZE(n-x*l)(.\(i-)(i_l) 3:Ff(n-1+l)(Yi- Yi-l)
1=1 i=]
Proof. Choose ¢, =c¢c, = ... = ¢ =1l,c 2 (€ = ... =i =20
1 2 r r+l r+ n

so that Cl >, >0 > <o The result follows from Theorem 5.11.]
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